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Learning takes place over long periods of time that are hard to study directly. Even the learning 
experience involved in solving a challenging math problem in a collaborative online setting can 
be spread across hundreds of brief postings during an hour or more. Such long-term interactions 
are constructed out of posting-level interactions, such as the strategic proposing of a next step. 
This paper identifies a pattern of exchange of postings that it terms math proposal adjacency 
pair, and describes its characteristics. Drawing on the methodology of conversation analysis, 
the paper adapts this approach to investigating mathematical problem-solving communication 
and to the computer-mediated circumstances of online chat. Math proposals and other 
interaction methods constitute the collaborative group as a working group, give direction to its 
problem solving and help to sustain its shared meaning making or group cognition. Groups 
sustain their online social and intellectual work by building up longer sequences of math 
proposals, other adjacency pairs and a variety of interaction methods. Experiences of 
collaboration and products of group cognition emerge over time. 
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Research in learning has traditionally focused on psychological processes at the 
individual unit of analysis. With the shift to socio-cultural approaches in recent years, 
the community unit of analysis has come to the fore. In a new book on group 
cognition, we have identified small groups as defining a middle ground between 
individual people and communities of practice: 

Small groups are the engines of knowledge building. The knowing that 
groups build up in manifold forms is what becomes internalized by their 
members as individual learning and externalized in their communities as 
certifiable knowledge. At least, that is a central premise of this book. (Stahl, 
2006b, p. 16) 

The concept of group cognition, however, retains a certain ambiguity of scale. On the 
micro level, it is based on the discovery by conversation analysis that a smallest 
element of meaning in discourse is the adjacency pair, a product of interaction within 

 

 



 

a dyad or small group, and not an expression of individual cognition (Duranti, 1998; 
Schegloff, 1991). On the macro level, it is a vision of collaborative knowledge 
building, where knowledge arises through community, interpersonal or social 
interaction (Lave & Wenger, 1991; Scardamalia & Bereiter, 1996; Vygotsky, 
1930/1978). Taking one approach or the other, we can analyze how a small group of 
students establishes a detailed point of shared understanding or we can, for instance, 
analyze how they apprentice participation in the community of math discourse. The 
question remains: how can we understand what happens in a group at the interesting 
meso level during a one-hour math chat consisting of many detailed interactions but 
perhaps not measurably increasing the group’s community participation?  

This paper tries to address the gap in the methodology of the learning sciences in 
a preliminary way. It begins with a detailed analysis of a particular interaction that 
actually occurred in a student chat. It then gradually broadens the discussion of 
online math chat sessions, discussing various aspects of how the elemental adjacency 
pairs in such a momentary interaction contribute to a sustained group experience over 
a somewhat longer period of time. The presentation proceeds through these steps: 
1. The context of online math chats which provide the empirical basis for our 

observations is first motivated and described. 
2. The concept of adjacency pairs from conversation analysis is adapted to the 

situation of online math chats and is particularized as “math proposal adjacency 
pairs.” 

3. A specific adjacency pair is analyzed as a “failed proposal,” which by contrast 
sheds light on the nature of successful proposals. 

4. We then describe our design-based research approach in which we revise our 
software and pedagogy in response to issues observed during a sequence of 
evolving trials. 

5. Next, we look at a more extended interaction that occurred in our revised chat 
environment, involving methods of computer-supported deictic referencing that 
build from adjacency pairs to longer sequences of cognitive work. 

6. To extrapolate beyond one or two detailed interactions and analyze more 
extended sessions with some generality would require volumes of exposition. 
We therefore rely on our other studies, our general impressions from observing 
and participating in many online math chats, and from related work by others to 
discuss a number of relevant aspects of sustained group cognition. 

7. We conclude with reflections on how groups construct and sustain their on-going 
sense of shared experience. This points to future work. 

1. Doing Mathematics Together Online 

Technology-enhanced learning offers many opportunities for innovation in 
education. One of the major avenues is by supporting the building of collaborative 
meaning and knowledge (Stahl, 2006b). For instance, it is now possible for students 
around the world to work together on challenging math problems. Through online 
discussion, they can share problem-solving experiences and gain fluency in 
communicating mathematically. Research on mathematics education stresses the 
importance of student discourse about math (NCTM, 2000; Sfard, 2002), something 
that many students do not have opportunities to practice face-to-face. 

While much research on computer-supported collaborative learning (CSCL) has 
analyzed the use of asynchronous threaded discussion forums, there has been 

 



 

relatively little research on the use of synchronous chat environments in education. 
The research reported here suggests that chat has great promise as a medium for 
collaborative learning if the medium and its use are carefully configured. This paper 
investigates how math discourse takes place within the chat medium and how we use 
our analyses to inform the design of effective math chat environments. 

In the Virtual Math Teams (VMT) research project at the Math Forum 
(http://mathforum.org/vmt), we invite middle-school students to participate in online 
chats about interesting problems in beginning algebra and geometry. The following 
math problem, discussed in the chat excerpt analyzed below, is typical: 

If two equilateral triangles have edge-lengths of 9 cubits and 12 cubits, what 
is the edge-length of the equilateral triangle whose area is equal to the sum 
of the areas of the other two? 
We rely on a variety of approaches from the learning sciences to guide our 

research and to analyze the results of our trials, including coding along multiple 
dimensions (Strijbos & Stahl, 2005), analysis of threading (Cakir et al., 2005) and 
ethnography (Shumar, 2006). In particular, we have developed an 
ethnomethodologically-informed (Garfinkel, 1967; Heritage, 1984) chat analysis 
approach based on conversation analysis (Pomerantz & Fehr, 1991; Psathas, 1995; 
Sacks, 1992; Sacks, Schegloff, & Jefferson, 1974; ten Have, 1999) to understand the 
structure of interactions that take place in student chats. In this paper, we adapt a 
finding of conversation analysis to math chats and analyze a specific form of 
adjacency pairs that seem to be important for this context. Before presenting these 
findings, it may be useful to describe briefly how the notion of adjacency pairs 
differs from naïve conceptions of conversation. 

There is a widespread common-sense or folk-theory (Bereiter, 2002; Dennett, 
1991) view of conversation as the exchange or transmission of propositions (Shannon 
& Weaver, 1949). This view was refined and formalized by logicians and cognitive 
scientists as involving verbal “expression” in meaningful statements by individuals, 
based on their internal mental representations. Speech served to transfer meanings 
from the mind of a speaker to the mind of a listener, who then interpreted the 
expressed message. Following Wittgenstein (1953) in critiquing this view, speech act 
theory (Austin, 1952; Searle, 1969) argued that the utterances spoken by individuals 
were ways of acting in the world, and were meaningful in terms of what they 
accomplished through their use and effects. Of course, the expression, transmission 
and interpretation of meaning by individuals can be problematic, and people 
frequently have to do some interactional work in order to re-establish a shared 
understanding. The construction of common ground has been seen as the attempt to 
coordinate agreement between individual understandings (Clark & Brennan, 1991).  

Conversation analysis takes a different view of conversation. It looks at how 
interactional mechanisms, like the use of adjacency pairs, co-construct inter-
subjectivity.  

Adjacency pairs are common sequences of utterances by different people—
such as mutual greetings or question/answer interchanges—that form a 
meaningful speech act spanning multiple utterances, which cannot be 
attributed to an individual or to the expression of already formed mental 
states. They achieve meaning in their very interaction. 

We are interested in what kinds of adjacency pairs are typical for math chats. The 
topic of adjacency pairs is taken up extensively in sections 2 and 6.1 below. Stahl 
(2006b) further discusses the implications that viewing adjacency pairs as the 
smallest elements of meaning making has for the intersubjective foundation of group 
cognition, a process of jointly constructing meaning in discourse. 
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The medium of online chat has its own peculiarities (Lonchamp, 2006; 
Mühlpfordt & Wessner, 2005; O'Neill & Martin, 2003). Most importantly, it is a text-
based medium, where interaction takes place by the sequential response of brief texts 
to each other (Livingston, 1995; Zemel, 2005). As a quasi-synchronous medium 
(Garcia & Jacobs, 1999), chat causes confusion because several people can be typing 
at once and their texts can appear in an order that obscures to whom or to what they 
are responding. Furthermore, under time pressure to submit their texts so that they 
will appear near the post to which they are responding, some chat participants break 
their messages into several short texts. Because of these peculiarities of chat, it is 
necessary for researchers to carefully reconstruct the intended threading of texts that 
respond to each other before attempting to interpret the flow of interaction (Cakir et 
al., 2005; Strijbos & Stahl, 2005). 

Math chats differ from ordinary informal conversation in a number of additional 
ways. They are focused on the task of solving a specific problem, and they take place 
within a somewhat formal institutional setting. They involve the doing of 
mathematics (Livingston, 1986). And, of course, they are computer-mediated rather 
than face-to-face. The approach of conversation analysis is based on 
ethnomethodology (Garfinkel, 1967), which involves the study of the methods that 
people use to accomplish what they are doing. So, we are interested in working out 
the methods that are used by students in online math chats. In this paper we discuss a 
particular method of collaboration in math chats that we have elsewhere called 
exploratory participation: participants engage each other in the conjoint discovery 
and production of both the problem and possible solutions (Wegerif, 2006; Zemel, 
Xhafa, & Stahl, 2005).  

2. Math proposal adjacency pairs 

In order to begin to analyze the methods that students use in math chats, we take a 
close look at an excerpt from an actual chat. Figure 1 shows an excerpt from near the 
beginning of the log of one of our first online collaborative math problem-solving 
sessions. Three students—named Avr, Sup and Pin—have just entered the chat room, 
said hello to each other and read the problem involving three triangles.  

The first thing to notice here is a pattern of proposals, discussions and 
acceptances similar to what takes place in face-to-face discourse. Bids for proposals 
about steps in solving the math problem are made by Avr in lines 1, 3, 8, 17 and by 
Pin in lines 20, 27. These proposals are each affirmed by someone else in lines 2, 6, 
10, 19, 22, 28, respectively.  

To avoid chat confusion, note that line 21 responds to line 19, while line 22 
responds to line 20. The timestamps show that lines 20 and 21 effectively overlapped 
each other chronologically: Avr was typing line 21 before she saw line 20. Similarly, 
lines 24 and the following were responses to line 20, not line 23. We will correct for 
these confusions later, in Figure 2, which reproduces a key passage in this excerpt. 

In Figure 1, we see several examples of a three-step pattern: 
1. A proposal bid is made by an individual for the group to work on: “I think we 

should ….” 
2. A proposal acceptance is made on behalf of the group: “Ok,” “right” 
3. There is an elaboration of the proposal by members of the group. The proposed 

work is begun, often with a secondary proposal for the first sub-step. 
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1. Avr (8:21:46 PM): Okay, I think we should start with the formula for the area of a 
triangle 
2. Sup (8:22:17 PM): ok 
3. Avr (8:22:28 PM): A = 1/2bh 
4. Avr (8:22:31 PM): I believe 
5. pin (8:22:35 PM): yes 
6. pin (8:22:37 PM): i concue 
7. pin (8:22:39 PM): concur* 
8. Avr (8:22:42 PM): then find the area of each triangle 
9. Avr (8:22:54 PM): oh, wait 
10. Sup (8:23:03 PM): the base and heigth are 9 and 12 right? 
11. Avr (8:23:11 PM): no 
12. Sup (8:23:16 PM): o 
13. Avr (8:23:16 PM): that's two separate triangles 
14. Sup (8:23:19 PM): ooo 
15. Sup (8:23:20 PM): ok 
16. Avr (8:23:21 PM): right 
17. Avr (8:23:27 PM): i think we have to figure out the height by ourselves 
18. Avr (8:23:29 PM): if possible 
19. pin (8:24:05 PM): i know how 
20. pin (8:24:09 PM): draw the altitude' 
21. Avr (8:24:09 PM): how? 
22. Avr (8:24:15 PM): right 
23. Sup (8:24:19 PM): proportions? 
24. Avr (8:24:19 PM): this is frustrating 
25. Avr (8:24:22 PM): I don't have enough paper 
26. pin (8:24:43 PM): i think i got it 
27. pin (8:24:54 PM): its a 30/60/90 triangle 
28. Avr (8:25:06 PM): I see 
29. pin (8:25:12 PM): so whats the formula 
Figure 1. Excerpt of 3½ minutes from a one-hour chat log. Three students chat about a geometry 
problem. Line numbers have been added and screen-names anonymized; otherwise the transcript is 
identical to what the participants saw on their screens. 

he three-step pattern consists of a pair of postings—a bid and an acceptance—that 
orm a proposal about math, and some follow-up effort. This suggests that 
ollaborative problem-solving of mathematics may often involve a particular form of 
djacency pair. We will call this a math proposal adjacency pair. 

Here are seven successful math proposal adjacency pairs from Figure 1: 
 

. Avr: Okay, I think we should start with the formula for the area of a triangle 

. Sup: ok 
 

. Avr: A = 1/2bh 

. pin: i concue 

. Avr: then find the area of each triangle 
0. Sup: the base and heigth are 9 and 12 right? 

7. Avr: i think we have to figure out the height by ourselves 
9. pin: i know how 



 

 
20. pin: draw the altitude' 
22. Avr: right 
 
27. pin: its a 30/60/90 triangle 
28. Avr: I see 

 
Note that the response is not always literally immediately adjacent to the bid in the 
chat log due to the complexities of chat posting. But the response is logically 
adjacent as an up-take of the bid. 

Many varieties of adjacency pairs allow for the insertion of other pairs between 
the two parts of the original pair, delaying completion of the original pair. For 
instance, a question/answer pair may be delayed by utterances seeking clarification of 
the question. As we will see in Section 5, the clarification interaction may itself 
consist of question/answer pairs, possibly with their own clarifications—this may 
continue recursively. With math proposal adjacency pairs, the subsidiary pairs seem 
to come after the completion of the original pair, in the form of secondary proposals, 
questions or explanations that start to do the work that was proposed in the original 
pair. This characteristic leads to their role in sustaining group inquiry. 

Math proposals tend to lead to some kind of further mathematical work as a 
response to carrying out what was proposed. Often—as seen in the current 
example—that work consists of making further proposals. In this way, the three-step 
structure of the math proposal adjacency pair starts to sustain the group interaction. 
The proposal bid by one person calls forth a proposal response by someone else. If 
the response is one of acceptance, it in turn calls forth some further work to be done 
or a bid for another proposal. If the response is a rejection, it may lead to 
justification, discussion and negotiation. 

It is striking that the proposed work is not begun until there is agreement with 
the proposal bid. This may represent consent by the group as a whole to pursue the 
proposed line of work. Of course, this idea is not so clear in the current example, 
where there are only three participants and the interaction often seems to take place 
primarily between pairs of participants. As confirmed by other chat examples, 
however, the proposal generally seems to be addressed to the whole group and opens 
the floor for other participants to respond. The use of “we” in “we should” or “we 
have to” (stated or implied) constitutes the multiple participants as a plural subject—
an effective unified group (Lerner, 1993). Any one other than the proposer may 
respond on behalf of the group. The fact that the multiple participants are posited as a 
group for certain purposes, like responding to a proposal bid, by no means rules out 
their individual participation in the group interaction from their personal 
perspectives, or even their independent follow-up work on the math. It simply means 
that the individual who responds to the bid may be doing so on behalf of the group. 

Moreover, there seems to be what in conversation analysis is called an 
interactional preference (Schegloff, Jefferson, & Sacks, 1977) for acceptance of the 
proposal. That is, if one accepts a proposal, it suffices to briefly indicate agreement: 
“ok.” If one wants to reject a proposal, however, then one has to account for this 
response by giving reasons. If the group accepts the bid, one person’s response may 
serve on behalf of the group; if the group rejects the bid, several people may have to 
get involved. 

We would like to characterize in more detail the method of making math 
proposal adjacency pairs. Often, the nature of an interactional method is seen most 
clearly when it is breached (Garfinkel, 1967). Methods are generally taken for 
granted by people; they are not made visible or conducted consciously. It is only 

 



 

when there is a breakdown (Heidegger, 1927/1996; Winograd & Flores, 1986) in the 
smooth, tacit performance of a method that people focus on its characteristics in 
order to overcome the breakdown. The normally transparent method becomes visible 
in its breach. In common-sense terms we say, “The exception proves the rule,” 
meaning that when we see why something is an exceptional case it makes clear the 
rule to which it is an exception. Heidegger made this into an ontological principle, 
whereby things first become experience-able during a breakdown of understanding. 
Garfinkel uses this, in turn, as a methodological fulcrum to make visible that which is 
commonly assumed and is effective but unseen.  

We can interpret Sup’s posting in line 23 as a failed proposal. Given the 
mathematics of the triangle problem, a proposal bid related to proportionality, like 
Sup’s, might have been fruitful. However, in this chat, line 23 was effectively 
ignored by the group. While its character as a failed proposal did not become visible 
to the participants, it can become clear to us by comparing it to successful proposal 
bids in the same chat and by reflecting on its sequential position in the chat in order 
to ask why it was not a successful bid. This will show us by contrast what the 
characteristics are that make other proposal bids successful. 

3. A Failed Proposal 

Let us look at line 23 in its immediate interactional context in Figure 2. We can 
distinguish a number of ways in which it differed from successful math proposal bids 
that solicited responses and formed math proposal adjacency pairs: 

 

(a) All the other proposal bids (1, 3, 8, 17, 20, 27) were stated in relatively 
complete sentences. Additionally, some of them were introduced with a phrase to 
indicate that they were the speaker’s proposal bid (1. “I think we should …,” 17. “I 
think we have to …,” 20. “i know how …” and 27. “i think i got it …”). The 
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17, 18. Avr (8:23: 29 PM): i think we have to figure out the height by ourselves … if
possible 
19. pin (8:24:05 PM): i know how 
21. Avr (8:24:09 PM): how? 
20. pin (8:24:09 PM): draw the altitude' 
22. Avr (8:24:15 PM): right 
24. Avr (8:24:19 PM): this is frustrating 
23. Sup (8:24:19 PM): proportions? 
Figure 2. Part of the chat log excerpt in Figure 1, with order revised for threading. 

xceptions to these were simply continuations of previous proposals: line 3 provided 
he formula proposed in line 1 and line 8 proposed to “then” use that formula. Line 
3, by contrast, provided a single word with a question mark. There was no syntactic 
ontext (other than the question mark) within the line for interpreting that word and 
here was no reference to semantic context outside of the line. Line 23 did not 
espond in any clear way to a previous line and did not provide any alternative 
eference to a context in the original problem statement or elsewhere. For instance, 
up could have said, “I think we should compute the proportion of the height to the 
ase of those equilateral triangles.” 

(b) The timing of line 23 was particularly unfortunate. It exactly overlapped a 
ine from Avr. Because Avr had been setting the pace for group problem solving 
uring this part of the chat, the fact that she was involved in following a different line 



 

of inquiry spelled doom for any alternative proposal around the time of line 23. Pin 
either seemed to be continuing on his own thread without acknowledging anyone else 
at this point, or else he was responding too late to previous postings. So a part of the 
problem for Sup was that there was little sense of a coherent group process—and 
what sense there was did not include him. If he was acting as part of the group 
process, for instance posing a question in reaction to Pin and in parallel to Avr, he 
was not doing a good job of it and so his contribution was ignored in the group 
process. It is true that a possible advantage of text-based interaction like chat over 
face-to-face interaction is that there may be a broader time window for responding to 
previous contributions. In face-to-face conversation, turn-taking rules may define 
appropriate turns for response that expire in a fraction of a second as the conversation 
moves on. In computer-based chat, the turn-taking sequence is more open. However, 
even here if one is responding to a posting that is several lines away, it is important to 
make explicit somehow the post to which one is responding. Sup could have said, “I 
know another way to find the height – using proportions.” His posting does not do 
anything like that; it relies purely upon sequential timing to establish its context, and 
that fails in this case.  

(c) Sup’s posting 23 came right after Pin’s proposal bid 20: “draw the altitude.” 
Avr had responded to this with 22 (“right”), but Sup seems to have ignored that. 
Pin’s proposal had opened up work to be done and both Avr and Pin responded after 
line 23 with contributions to this work. So Sup’s proposal bid came in the middle of 
an ongoing line of work without relating to it. In sequential terms, he made a bid for 
a proposal when it was not time to make a proposal. Sup’s proposal bid was not 
positioned within the group effort to sustain a promising line of inquiry. It is like 
trying to take a conversational turn when there is not a pause that creates a turn-
taking opportunity. Now, it is possible—especially in chat—to introduce a new 
proposal at any time. However, to do so effectively, one must make a special effort to 
bring the on-going work to a temporary halt and to present one’s new proposal as an 
alternative. Simply saying “proportions?” will not do it. Sup could have said, 
“Instead of drawing the altitude, let’s use proportions to find it.” 

 (d) To get a proposal response to a proposal bid, one can elicit at least an 
affirmation or recognition. Again, this is a matter of pre-structuring a sustained 
interaction. Line 23 does not really solicit a response. For instance, Avr’s question, 
21: “how?” called for an answer—that was given by Pin in line 20, which actually 
appeared in the chat window just prior to the question and with the same time stamp. 
But Sup’s posting does not call for a specific kind of answer. Even Sup’s own 
previous proposal bid in line 10 ended with “right?”—requiring agreement or 
disagreement. Line 10 elicited a clear response from Avr, line 11 (“no”) followed by 
an exchange explaining why Sup’s proposal was not right.  

(e) Other proposal bids in the excerpt are successful in contributing to sustaining 
the collaborative knowledge building or group problem solving in that they open up a 
realm of work to be done. One can look at Avr’s successive proposal bids on lines 1, 
3, 8 and 17 as laying out a work strategy. This elicits a proposal response from Sup 
trying to find values to substitute into the formula and from Pin trying to draw a 
graphical construction that will provide the values for the formula. Sup’s proposal 
bid in line 23, however, neither calls for a response nor opens up a line of work. 
There is no request for a reaction from the rest of the group, and the proposal bid is 
simply ignored. Since no one responded to Sup, he could have continued by doing 
some work on the proposal himself. He could have come back and made the proposal 
more explicit, reformulated it more strongly, taken a first step in working on it, or 
posed a specific question related to it. But he did not—at least not until much later—
and the matter was lost. 

 



 

(f) Another serious hurdle for Sup was his status in the group at this time. In 
lines 10 through 16, Sup had made a contribution that was taken as an indication that 
he did not have a strong grasp of the math problem. He offered the lengths of the two 
given triangles as the base and height of a single triangle (line 10). Avr immediately 
and flatly stated that he was wrong (line 11) and then proceeded to explain why he 
was wrong (line 13). When he agreed (line 15), Avr summarily dismissed him (line 
16) and went on to make a new proposal that implied his approach was all wrong 
(lines 17 and 18). Then Pin, who had stayed out of the interchange, re-entered, 
claiming to know how to implement Avr’s alternative proposal (lines19 and 20) and 
Avr confirmed that (line 22). Sup’s legitimacy as a source of useful proposals had 
been totally destroyed at precisely the point just before he made his ineffective 
proposal bid. Less than two minutes later, Sup tries again to make a contribution, but 
realizes himself that what he says is wrong. His faulty contributions confirm 
repeatedly that he is a drag on the group effort. He makes several more unhelpful 
comments later and then drops out of the discourse for most of the remaining chat. 
Sustaining a math chat discourse involves work to maintain an ongoing social 
interaction as well as work to continue the math inquiry. Proposal bids and other 
postings are constrained along multiple dimensions of efforts to sustain the activity. 

The weaknesses of line 23 as a proposal bid suggest (by contrast, exception, 
breach or breakdown) some characteristics for successful proposals:  
(a) a clear semantic and syntactic structure,  
(b) careful timing within the sequence of postings,  
(c) a firm interruption of any other flow of discussion,  
(d) the elicitation of a response,  
(e) the specification of work to be done and  
(f) a history of helpful contributions.  
In addition, there are other interaction characteristics and mathematical requirements. 
For instance, the level of mathematical background knowledge assumed in a proposal 
must be compatible with the expertise of the participants, and the computational 
methods must correspond with their training. Additional characteristics become 
visible in other examples of chats. Successful proposals contribute in multiple ways 
to sustaining the group cognitive process. 

As we have just seen, the formulation of effective bids for math proposals 
involves carefully situating one’s posting within the larger flow of the chat. This is 
highly analogous to taking a turn in face-to-face conversation (Sacks et al., 1974). 
Where conversation analysis developed a systematics of turn taking, we are trying to 
discover the systematics of chat interaction. This would describe how math proposals 
and other chat methods must be designed to fit into—and thereby contribute to—the 
sustained flow of group interaction. 

So far in this paper, the notion of math proposal adjacency pairs has been 
illustrated in just a single chat log excerpt. But in our research we have seen both 
successful and failed math proposals many times. Other researchers have also noted 
the role of successful and failed proposals in collaborative problem solving (Barron, 
2003; Cobb, 1995; Dillenbourg & Traum, 2006; Sfard & McClain, 2003). 

Each proposal bid and uptake is unique—in its wording and its context. The 
interactional work that it does and the structuring that it employs are situated in the 
local details of its sequential timing and its subtle referencing of unique and 
irreproducible elements of the on-going chat. Each group of students develops 
somewhat different methods of engaging with math problems and making math 
proposals. Even within a given chat, each posting pair that might be a proposal must 
be analyzed as a unique, meaning-making interaction in order to determine if it is in 
fact a math proposal adjacency pair. That is why case studies provide the necessary 

 



 

evidence—the essential details of interaction methods are lost in aggregation, in the 
attempt to overcome what Garfinkel (1967) terms the “irreducible indexicality” of 
the event. To the extent that identifying proposal pairs is a useful analytic approach, 
it is important to determine what interactional methods of producing such proposals 
are effective (or not) in fostering successful knowledge building and group cognition, 
as we have begun to do here.  

An understanding of methods like proposal making can guide the design of 
activity structures for collaborative math. As we are collecting and analyzing a 
corpus of chat logs under different technological conditions, we are evolving the 
design of computer support through iterative trials and analyses. 

4. Designing Computer Support 

If the failure of Sup’s proposal about proportions is considered deleterious to the 
collaborative knowledge building around the triangles problem, then what are the 
implications of this for the design of educational computer-based environments? One 
response would be to help students like Sup formulate stronger proposals. 
Presumably, giving him positive experiences of interacting with students like Avr 
and Pin, who are more skilled in chat proposal making, would provide Sup with 
models and examples from which he can learn—assuming that he perseveres and 
does not drop out of the chat.  

Another approach to the problem would be to build functionality into the 
software and structures into the activity that scaffold the ability of weak proposal 
bids to survive. As students like Sup experience success with their proposals, they 
may become more aware of what it takes to make a strong proposal bid. 

Professional mathematicians rely heavily upon inscription—the use of 
specialized notation, the inclusion of explicit statements of all deductive steps and the 
format of the formal proof to support the discussion of math proposals—whether 
posted on an informal whiteboard, scrawled across a university blackboard or 
published in an academic journal. Everything that is to be referenced in the 
discussion is labeled unambiguously. To avoid ellipsis, theorems are stated explicitly, 
with all conditions and dependencies named. The projection of what is to be proven 
is encapsulated in the form of the proof, which starts with the givens and concludes 
with what is proven. Perhaps most importantly, proposals for how to proceed are 
listed in the proof itself as theorems, lemmas, etc. and are organized sequentially. 
(This view of proof is an idealization that abstracts from unstated tacit background 
knowledge of the mathematical community, as Livingston (1999) and Wittgenstein 
(1944/1956) before him have demonstrated.) 

One could imagine a chat system supplemented with a window containing an 
informal list of proposals analogous to the steps of a proof. After Sup’s proposal, the 
list might look like Figure 3. When Sup made a proposal in the chat, he would enter a 
statement of it in the proof window in logical sequence. He could cross out his own 
proposal when he felt it had been convincingly argued against by the group (see 
dashed lines in Figure 3 crossing out the proposal that base and height = 9 and 12). 

The idea is that important proposals that were made would be retained in a 
visible way and be shared by the group. Of course, there are many design questions 
and options for doing something like this. Above all, would students understand this 
functionality and would they use it? The design sketch indicated in Figure 3 is only 
meant to be suggestive.  

Another useful tool for group mathematics would be a shared drawing area. In 
the chat environment used by Sup, Pin and Avr, there was no shared drawing, but a 

 



 

 
Figure 3. A list of proposals. 

student could create a drawing and send it to the others. Pin did this twelve minutes 
after the part of the interaction shown in the excerpt. Before the drawing was shared, 
much time was lost due to confusion about references to triangles and vertices. For 
math problems involving geometric figures, it is clearly important to be able to share 
drawings easily and quickly. Again, there are many design issues, such as how to 
keep track of who drew what, who is allowed to erase, how to point to items in the 
drawing and how to capture a record of the graphical interactions in coordination 
with the text chatting. 

Because we are designing a computer-supported experience that has never 
before existed and because we want our design to be based on detailed study of how 
students actually create their collaborative experience in the environment we are 
designing, we follow a highly iterative try-analyze-redesign cycle of design-based 
research (Design-Based Research Collective, 2003), in order to asymptotically 
approach an effective computer-supported environment and math discourse 
community. 

We started with a simple online service. We used AOL’s IM commercial chat 
system that was already familiar to many students. We invited students into chat 
rooms and presented a problem from the Math Forum’s well-established Problem of 
the Month service. An adult facilitator was present in the room to help with any 
technical problems. When we saw how necessary a shared whiteboard was we tried 
an open source solution and also WebCT’s and Blackboard’s interactive classrooms. 
Eventually we collaborated with researchers in Germany to use and further develop 
ConcertChat. Together, we have gradually evolved ConcertChat into a sophisticated 
environment for both students and researchers.  

Since the early AOL-based chat analyzed above, we have gone through many 
cycles of design, trial and analysis. In addition to designing support for persistent 
summaries of work (such as that in Figure 3) and a shared whiteboard for 

 



 

constructing geometric drawings (discussed in the following section and shown in 
Figure 4), we have incorporated the following: a referencing tool; a way for users to 
explicitly thread their chat postings; several forms of social awareness; tutorials on 
how to use the new features; a help system on using the tools, collaborating and 
problem-solving; and a lobby to support group formation. We have also 
experimented extensively with how best to formulate math problems or topics and 
how to provide feedback to students on their work.  

5. References and Threading 

The more we study chat logs, the more we see how interwoven the postings are with 
each other and with the holistic Gestalt of the interactional context that they form. 
There are many ways in which a posting can reference elements of its context. The 
importance of indexicality to creating shared meaning was stressed by Garfinkel 
(1967). Vygotsky also noted the central role of pointing for mediating 
intersubjectivity in his analysis of the genesis of the infant-and-mother’s pointing 
gesture (1930/1978, p. 56). Our analysis of face-to-face collaboration emphasized 
that spoken utterances in collaborative settings tend to be elliptical, indexical and 
projective ways of referencing previous utterances, the conversational context and 
anticipated responses (Stahl, 2006b, chapter 12). 

Based on these practical and theoretical considerations—and working with the 
ConcertChat developers—we evolved the VMT-Chat environment. As shown in 
Figure 4, it not only includes a shared whiteboard, but has functionality for 
referencing areas of the whiteboard from chat postings and for referencing previous 
postings. The shared whiteboard is necessary for supporting most geometry 

 
Figure 4. Screen view of VMT-Chat with referencing. Line 12 of the chat is selected. 

 



 

problems. (This will save Avr the frustration of running out of paper, and also let Pin 
and Sup see what she is drawing and add to it or reference it.) Sharing drawings is 
not enough; students must be able to reference specific objects or areas in the 
drawing. (For example, Sup could have pointed to elements of the triangles that he 
felt to be significantly proportional.) The whiteboard also provides opportunities to 
post text where it will not scroll away. (Sup could have put his failed proposal in a 
text box in the whiteboard, where he or the others could come back to it later.) The 
graphical references (see the bold line from a selected posting to an area of the 
drawing in Figure 4) can also be used to reference one or more previous postings 
from a new posting in order to make the threads of responses clearer in the midst of 
“chat confusion” (Fuks, Pimentel, & de Lucena, 2006). 

In one of our first chats using VMT-Chat, the students engaged in a particularly 
complex interaction of referencing a figure in the whiteboard whose mathematics 
they wanted to explore (Stahl, Zemel et al., 2006). Here is the chat log from Figure 4 
(graphical references to the whiteboard are indicated by “[REF TO WB]” in the log): 

 
1  ImH: what is the area of this shape? [REF TO WB]  
2  Jas: which shape?  
3  ImH: woops  
4  ImH: ahh!  
5  Jas: kinda like this one? [REF TO WB]  
6  Jas: the one highlighted in black and dark red? 
7   ImH: between th stairs and the hypotenuse 
8  Jas: oh 
9   Jas: that would be a tricky problem, each little 
    “sector” is different 
10  Jas: this section [REF TO WB] 
11  ImH: perimeter is 12root3 
12  Jas: is smaller than this section [REF TO WB]  
13  ImH: assume those lines are on the blocks 
14  Jas: the staircase lines? 
15  ImH: yeah 
16  Jas: they already are on the blocks 

 
Line 1 of the chat textually references an abstract characteristic of a complex 

graphical form in the whiteboard: “the area of this shape.” The software function to 
support this reference failed, presumably because the student, ImH, was not 
experienced in using it and did not cause the graphical reference line to point to 
anything in the drawing. Line 5 provides a demo of how to use the referencing tool. 
Using the tool’s line, a definite textual reference (“the one”) and the use of line color 
and thickness in the drawing, lines 5 and 6 propose an area to act as the topic of the 
chat. Line 7 makes explicit in text the definition of a sub-area of the proposed area. 
Line 8 accepts the new definition and line 9 starts to work on the problem concerning 
this area. Line 9 references the problem as “that” and notes that it is tricky because 
the area defined does not consist of standard forms whose area would be easy to 
compute and add up. It refers to the non-uniform sub-areas as little “sectors.” Line 10 
then uses the referencing tool to highlight (roughly) one of these little sectors or 
“sections.” Line 12 continues line 10, but is interrupted in the chat log by line 11, a 
failed proposal bid by ImH. The chat excerpt continues to reference particular line 
segments using deictic pronouns and articles as well as a growing vocabulary of 
mathematical objects of concern: sectors, sections, lines, blocks.  

Progress is made slowly in the collaborative exploration of mathematical 
relationships, but having a shared drawing helps considerably. The students use 
multiple textual and graphical means to reach a shared understanding of 

 



 

mathematical objects that they find interesting but hard to define. In this excerpt, we 
start to get a sense of the complex ways in which brief textual postings weave dense 
webs of relationships among each other and with other elements of the collaborative 
context.  

This example shows how creating shared meaning can require more than a 
simple adjacency pair. In order to establish a reference to “this shape” that could 
allow the two participants to discuss that math object, the dyad had to construct a 
complex involving nested question/answer pairs, math proposal pairs, a failed 
proposal bid, drawing, coloring, labeling, pointing, multiple repairs, computations. 
Here we see a more sustained group cognitive process. Across 16 postings and 
considerable coordinated whiteboard activity during two minutes, the student dyad 
defines a math object for investigation. The definition is articulated by this whole 
sequence of combined and intricately coordinated textual and graphical work. 

6. Sustaining the Group Interaction 

The goal of our research is to provide a service to students that will allow them to 
have a rewarding experience collaborating with their peers in online discussions of 
mathematics. We can never know exactly what kind of subjective experience they 
had, let alone predict how they will experience life under conditions that we design 
for them. For instance, it is methodologically illegitimate to ask if ImH already 
“intended” or “had in mind” in line 1 the shape that the group subsequently arrived 
at. We know from the log that ImH articulated much of the explicit description, but 
he only did this in response to Jas. If we interviewed ImH afterwards he might quite 
innocently and naturally project this explicit understanding back on his earlier state 
of mind as a retrospective account or rationalization (Suchman, 1987). 

Our primary access to information related to the group experiences comes from 
chat logs (including the whiteboard history). The logs capture most of what student 
members see of their group on their computer screens. They therefore constitute a 
fairly complete record of everything that the participants themselves had available to 
understand their group interaction. We can even replay the logs so that we see how 
the session unfolded sequentially in time. Of course, we are not engaged in the 
interaction the way the participants were, and recorded experiences never quite live 
up to the live version because the engagement is missing. To gain some first-hand 
experience, we do test out the environments ourselves and enjoy the experience, but 
we experience math and collaboration differently than do middle-school students. We 
also interview students and their teachers, but teenagers rarely reveal much of their 
life to adults. 

So we try to understand how collaborative experiences are structured as 
interpersonal interactions that are sustained over time. The focus is not on the 
individuals as subjective minds, but on the human, social group as constituted by the 
interactions that take place within the group. Although we generally try to ground our 
understanding of interaction through close, detailed analysis of excerpts from chat 
recordings, we do not have room to document our analysis of longer scale structures 
at that level of detail in this paper. We have collected over 50 hours of small-group 
chat about math. We engage in weekly collaborative data sessions (Jordan & 
Henderson, 1995) to develop case studies of unique chat excerpts. A number of 
published papers arising from these sessions are available at 
http://www.mathforum.org/vmt/researchers/publications.html. The discussion in the 
remainder of this paper is a high-level summary based on what we have observed.  

 

http://www.mathforum.org/vmt/researchers/publications.html


 

6.1. Replies, up-take, pairs and triplets 

Figure 5 provides a diagram of the responses of postings in the chat discussed in 
Sections 2 and 3 above involving Avr, Pin and Sup. The numbers of the posts by 
each participant are placed in chronological order in a column for that participant. 
Math proposal adjacency pairs are connected with solid arrows and other kinds of 
responses are indicated with dashed arrows. Note that Sup’s failed proposal bid (line 
23) is isolated. Most of the chat, however, has coherence, flow or motion due to the 
fact that most postings are responses to previous messages. This high level of 
responses is due to the fact that many postings elicit responses or up-take, the way 
that a greeting invariably calls forth another greeting in response, or a question 
typically produces an answer. In a healthy conversation, most contributions by one 
participant are taken up by others. Conversationalists work hard to fit their offerings 
into the timing and evolving focus of the on-going interaction. In chat, the timing, 
rules and practices are different, but the importance of up-take remains.  
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Figure 5. Threading of adjacency 
pairs and other uptake. 

The fact that the group process and the cross-ties between people are central to 
collaborative experiences does not contradict the continuing importance of the 
individuals. The representation of Figure 5 uses columns to indicate the connections 
and implicit continuity within the sequence of contributions made by an individual 
(compare the representation in Sfard & McClain, 2003). We may project 
psychological characteristics onto the unity of an individual’s postings, attributing 
this unity to personal interests, personality, style, role, etc. Such attributions may 
change as the chat unfolds. The point is that the individual coherence and unfolding 
of each participant’s contributions adds an important dimension of implicit sustaining 
connections among the postings. 

Adjacency pairs like math proposals, 
greetings and questionings provide important 
ties that cut across the connections of individual 
continuities. They form the smallest elements of 
shared meaning precisely by binding together 
postings from different people. A proposal bid 
that is not taken up is not a meaningful 
proposal, but at best a failed attempt at a 
proposal. A one-sided greeting that is not 
recognized by the other is not an effective 
greeting. An interrogative expression that does 
not call for a response is no real questioning of 
another. These adjacency pairs are all 
interactional moves whose meaning consists in 
a give-and-take between two or more people. 
When we hear something that we recognize as a 
proposal bid, a greeting or a question, we feel 
required to attempt an appropriate response. We 
may ignore the proposal bid, snub the greeter or 
refuse to answer the question, but then our 
silence is taken as a response of ignoring, 
snubbing or refusing—and not simply a lack of 
response.  

In fact, the way that a response is taken is 
also part of the interaction itself. In discussing 
the building of “common ground,” Clark argues 
that shared understanding by A and B of A’s 

 



 

utterance involves not only B believing that he understands A, but also A agreeing 
that B understands (Clark & Brennan, 1991). This requires an interaction spanning 
multiple utterances. For instance, the most prevalent interaction in classroom 
discourse is when a teacher poses a question, a student provides an answer 
demonstrating understanding and then the teacher acknowledges the student response 
as such an understanding (Lemke, 1990). Here, the elemental cell of interactional 
meaning making is a sequence of contributions by different people.  

It is clear in this analysis that the meaning is constructed through the interaction 
of multiple people, and is not a simple expression of pre-existing mental 
representations in any one individual’s head. This is the philosophical importance of 
the concept of adjacency pair: that meaning in groups is made through the interaction 
of multiple people, not completely by an individual’s mental activity. In calling this 
“group cognition,” we extend the term “cognition” from individual psychology to 
apply to processes in which small groups through their discourse construct meaning 
structures like logical arguments or mathematical proofs—that is, they engage in 
processes which are considered thinking when conducted by individual people. This 
approach is consistent with dialogical theories that actually view higher-level 
thinking by individuals as derivative of such intersubjective meaning making 
(Bakhtin, 1986; Linell, 2001; Stahl, Koschmann, & Suthers, 2006; Vygotsky, 
1930/1978; Wegerif, 2006). 

6.2. Longer sequences 

Although much attention has been given to adjacency pairs in conversation analysis 
and although such pairs can be thought of as the elements of meaning making in 
collaborative interaction, they form only one of many levels of analysis. For instance, 
there are longer sequences (Sacks, 1992, vol. II, p. 354), episodes (Linell, 2001) and 
topics in dialogs and chats (Zemel, Xhafa, & Cakir, 2005) that provide layers of 
structure and sense. An hour-long chat is not a homogeneous interchange. A typical 
math chat might start with a period of introductions, greetings, socializing. Then 
there could be some problem-solving work. This might be periodically interrupted by 
joking, playing around, or silliness. People may come and go, requiring catching up 
and group reorganization. Each of these episodes has boundaries during which the 
group members must negotiate whether or not to stop what they were doing and start 
something else. These transitions may themselves be longer sequences of interaction, 
especially in large groups. We have barely begun to explore these different layers.  

In social conversation, people work hard to strike up conversations, to propose 
new topics of mutual interest and to keep the conversation going. Online math chats 
face similar challenges. Students hesitantly greet each other and get things started. 
Math proposals are often used to introduce new topics and to carry forward a train of 
thought together. Finally, participants engage in considerable interaction work to 
sustain their sessions, intertwining humor, socializing and math inquiry—often using 
one of these modes to sustain others. Eventually every group decides to disband, at 
least until a future session. 

The referencing excerpt from VMT-Chat in Section 5 above was from the 
second hour-long session in a series of four chats by the same group. The sessions 
referred back to previous sessions and prepared for future ones. We hope to foster a 
community of Math Forum users who come back repeatedly to math chats, 
potentially with their friends. Their chats will reference other chats and different 
online experiences, building connections at the community level. This adds more 

 



 

layers of interconnections. It may sustain group interaction, inquiry and reflection 
over more significant periods of time. 

6.3. Constructing proofs 

Learning math involves becoming skillful in the social practices of the math 
community (Livingston, 1999). The math community is an aspect of the world-
historical global community. The most central participants are the great 
mathematicians, who have invented new mathematical objects and developed new 
forms of mathematical practice (Sfard & Linchevski, 1994). Most of the population 
has low math literacy and participates on the periphery of the math discourse 
community. They are unable to manipulate math concepts fluidly in words or 
mathematical symbolism (Sfard, 2002). Nevertheless, they can use basic arithmetic 
methods for practical purposes (Lave, 1988). One of the most fundamental methods 
of math is counting, which children are drilled at extensively. Formal math assumes 
that the practitioner is skilled at following rules, such as the non-formalized rules of 
numeric sequencing (Wittgenstein, 1944/1956). 

In our chats, students work on math problems and themes. In solving problems 
and exploring math worlds or phenomena, the groups construct sequences of 
mathematical reasoning that are related to proving. Proofs in mathematics have an 
interesting and subtle structure. To understand this structure, one must distinguish:  
• the problem statement-and-situation;  
• the exploratory search for a solution;  
• the effort to reduce a haphazard solution path to an elegant, formalized proof;  
• the statement of the proof; and  
• the lived experience of following the proof (Livingston, 1986, 1987).  
Each of these has its own structures and practices. Each implicitly references the 
others. To engage in mathematics is to become ensnarled in the intricate connections 
among them. To the extent that these aspects of doing math have been distinguished 
and theorized, it has been done as though there is simply an individual mathematician 
at work. There has been virtually no research into how these could be accomplished 
and experienced collaboratively—despite the fact that talking about math has for 
some time been seen as a priority in math education (NCTM, 1989; Sfard, 2002). 

6.4. The stream of group consciousness 

Psychologists like William James and novelists like Jack Kerouac have described 
narratives that we tell ourselves silently about what we are doing or observing as our 
stream of consciousness. This “inner voice” rattles on even as we sleep, making 
connections that Sigmund Freud found significant (if somewhat shocking in his day). 
In what sense might online chats—with their meanderings, flaming, associative 
referencing, unpredictable meaning making and unexpected images—deserve equal 
status as streams of (group) consciousness? Group cognition can be self-conscious: 
The group discourse can talk about the existence of the group discourse itself and 
comment on its own characteristics. 

Our sense of sustained time and the rhythms of life are largely reliant upon the 
narratives we tell ourselves (Bruner, 1990; Sarmiento, Trausan-Matu, & Stahl, 2005). 
We know that we have already lived through a certain part of the day or of our life 
because our present is located within a nexus of ties to the past or hopes for the 

 



 

future. In similar ways, a chat’s web of references that connects current postings to 
prior ones to which they respond and to future postings that they elicit defines a 
temporality of the chat. This is experienced as a lived sense of time that is shared by 
the group in the chat. Like our individual internal clocks, the group temporality is 
attuned to the larger world outside—the world of family life that calls the students 
away from the chat for dinner or the world of school that interrupts a chat with class 
changes or homework pressures. The temporality that defines a dimension of the 
collaborative experience is constrained by the nature of the social situation and by the 
functionality of the technological environment. 

7. Constructing the Group Experience 

Groups constitute themselves (Garfinkel, 2006, pp. 189ff; Sacks, 1992, vol. I, pp. 
144-149). We can see how they do this in the chat logs. At one level the VMT 
service brings several students together and locates them in a chat room together. It 
may supply a math problem for them to work on and it may provide a facilitator who 
introduces them to the environment. At this point, they are a potential group with a 
provisionally defined membership. The facilitator might say something like, 
“Welcome to our first session of Virtual Math Teams! I am the facilitator for your 
session. . . . As a group, decide which question you would like to work on.” (This is, 
in fact, part of the facilitator script from the session involving ImH and Jas excerpted 
above.) Here we can see that the facilitator has defined the group (“as a group … 
you”) and distinguished her own role as outside the group (“I am the facilitator … 
your session”). The potential group projected by the facilitator need not necessarily 
materialize. Individual students may come to the setting, look around, decide it is 
lame, and leave as individuals. However, this rarely happens. Sometimes an 
individual will leave without ever interacting, but as long as enough students come 
there, a group emerges. 

Students enter the chat environment with certain motivations, expectations and 
experiences. These are generally sufficient to get the group started. One can see the 
group form itself. This is often reflected in the shift from singular to plural pronouns: 
“Let’s get started. Let us do some math.” We saw this in Avr’s proposal: “I think we 
have to figure out the height by ourselves.” The proposal bid comes from an 
individual, but the projected work is for the group. Through her use of “we,” Avr 
constitutes the group. Through her proposal bid, she constitutes the group as a 
recipient of the bid and elicits a response from them. Someone other than Avr must 
respond to the bid on behalf of the group. When Pin says, “I know how: draw the 
altitude,” he is accepting Avr’s proposal as a task for the group to work on and in so 
doing he makes a proposal about how the group should go about approaching this 
task (by making a geometric construction). In this interchange, the group (a) is 
projected as an agent (“we”) in the math work (Lerner, 1993), and (b) is actually the 
agent of meaning making because the meaning of Avr’s proposal is defined by the 
interaction within the group (e.g., by a math proposal adjacency pair).  

If the group experience is a positive one for the participants, they may want to 
return. Some chats end with people making plans to get together again. In some 
experiments, the same groups attended multiple sessions. We would like to see a 
community of users form, with teams re-forming repeatedly and with old-timers 
helping new groups to form and learn how to collaborate effectively. 

The recognition that collaborative groups constitute themselves interactionally 
and that their sense making takes place at the group unit of analysis has implications 
for the design of cognitive tools for collaborative communities. The field of 

 



 

computer-supported collaborative learning (CSCL) was founded a decade ago to 
pursue the analysis of group meaning making and the design of media to support it 
(Stahl, Koschmann et al., 2006). We view the research described here as a 
contribution to this CSCL tradition. 

We are designers of tools for collaborative groups. We want to design an online 
collaborative service, with strong pedagogical direction and effective computer 
support. Our goal is to design an environment that fosters exciting mathematical 
group experiences for students and inspires them to return repeatedly. Our ultimate 
vision is to foster a sustainable community of math discourse among students. We 
approach this by trying to understand how groups of students construct their 
experience in such settings.  

When students enter our website now, they are confronted by a densely designed 
environment. The lobby to our chat rooms is configured to help students find their 
way to a room that will meet their needs. In the room, there is a daunting array of 
software functionality for posting and displaying chat notes, drawing geometric 
forms and annotating them, keeping track of who is doing what and configuring the 
space to suit oneself. There may be a statement of a math problem to solve or an 
imaginary world to explore mathematically. The service, problems and software are 
all designed to enhance the user’s experience. But how can a student who is new to 
all this understand the meanings of the many features and affordances that have been 
built into the environment? 

Groups of students spontaneously develop methods for exploring and responding 
to their environments. They try things out and discuss what happens. A new group 
may doodle on the whiteboard and then joke about the results. They bring with them 
knowledge of paint and draw programs and skills from video games, SMS and IM. 
The individuals may have considerable experience with single-user apps, but react 
when someone else erases their drawing; they must learn to integrate coordination 
and communication into their actions. The math problems they find in the chat rooms 
may be quite different than the drill-and-practice problems they are used to in 
traditional math textbooks. It may take the group a while to get started in productive 
problem solving, so the group has to find ways to keep itself together and interacting 
in the meantime. There may be various forms of socializing, interspersed with 
attempts to approach the math. As unaccustomed as the math may be, the students 
always have some knowledge and experience that they can bring to bear. They may 
apply numerical computations to given values; try to define unknowns and set up 
equations; graph relationships; put successive cases in a table; use trigonometric 
relationships or geometric figures; draw graphical representations or add lines to an 
existing drawing. Mainly, they put proposals out in the chat stream and respond to 
the proposals of others. Sometimes the flow of ideas wanders without strong 
mathematical reflection. Other times, one individual can contribute substantial 
progress and engage in expository narrative to share her contribution with the group 
(Stahl, 2006a). 

Groupware is never used the way its designers anticipated. The designers of 
VMT-Chat thought that its referencing tools would immediately clarify references to 
elements of drawings and transform chat confusion into logical threaded chat. But 
our studies of the actual use of these designed functions tell a quite different and 
more interesting story. The shared whiteboard with graphical references from the 
chat may allow more complex issues to be discussed, but they do not make pointing 
problem free. We saw in Section 5 how much work ImH and Jas engaged in to 
clarify for each other what they wanted to focus on. In the excerpt and in the longer 
chat, they used a variety of textual, drawing and referencing methods. Through this 
process, they learned how to use these methods and they taught each other their use. 

 



 

Within a matter of a fraction of a minute, they were able to reach a shared 
understanding of a topic to work on mathematically. During that brief time, they used 
dozens of deictic methods, some that would prove more useful than others for the 
future. 

Chat is a highly constrained medium. Participants feel various pressures to get 
their individual points of view out there. In a system like VMT-Chat, there is a lot to 
keep track of: new postings, changes to the whiteboard, signs that people are joining, 
leaving, typing, drawing. Small details in how something is written, drawn or 
referenced may have manifold implications through references to present, past or 
future circumstances. Students learn to track these details; apply them creatively; 
acknowledge to the group that they have been recognized; check, critique and repair 
them. Each group responds to the environment in its own way, giving group meaning 
to the features of the collaborative world and thereby putting their unique stamp on 
their group experience. 

In the process, they create a group experience that they share. This experience is 
held together with myriad sorts of references and ties among the chat postings and 
drawings. Often, what is not said is as significant as what is. Individual postings are 
fragmentary, wildly ambiguous, and frequently confusing. In lively chats, much of 
what happens remains confusing for most participants. Clarity comes only through 
explicit reflections, up-takes, appreciations or probing. The interactions among 
postings, at many levels, cohere into a stream of group consciousness, a flow of 
collaboration, a shared lived temporality and, with luck, an experience of 
mathematical group cognition. 

The small groups who meet in the VMT-Chat rooms participate in the larger 
collaborative communities of: the VMT project, the Math Forum user community 
and the math discourse community at large. In general, interacting small groups 
mediate between their individual members and the larger communities to which they 
belong. The discourse within the small group evokes and collects texts, drawings and 
actions by different participants, who bring multiple interpretive perspectives to the 
shared meaning making. Enduring ambiguity, mutual inconsistency and down-right 
contradiction pervade the resultant group cognition, with its “inter-animation of 
perspectives” (Bakhtin, 1986; Wegerif, 2006). Whether or not we assume that an 
individual’s thoughts are logically consistent and interpretively determinant, it seems 
that much of a group chat generally remains a mystery to both participants and 
researchers. Yet, from out of the shrouds of collective fog insights are co-constructed 
that could not otherwise shine forth. The tension arising from conflicting or 
ungraspable interpretations in place of harmonious shared meaning fuels the creative 
work of constructing innovative group understanding. 

The chat environment as incorporated in the VMT project is essentially different 
from familiar conversational situations, as we have seen in this paper. In general, 
there is little known by the participants about each other, except for what appears in 
the chat text or whiteboard drawings. No one’s age, gender, appearance, accent, 
ethnicity is known. Even people’s real names are replaced in the chat with 
anonymous login handles. Participants do not observe each other typing and 
correcting text until it is posted. Nor do they see what people are doing or saying in 
their lives outside the chat—if they have gone for a snack, are talking on the phone or 
are engaged in other, simultaneous online interactions. Normally, a person’s history, 
culture and personality are conveyed through their vocal intonation and physical 
appearance (Bourdieu, 1972/1995); these are absent in chat. The one-hour duration of 
most VMT chats limits the history that can be established among participants through 
the available outlets of text and drawing, interaction style, word choice and use of 
punctuation. Yet these drastically restricted means somehow allow incredibly rich, 

 



 

unique, creative and sophisticated interactions to take place. Insights take place and 
are shared; meaning is constructed and made sense of by groups. Perspectives and 
personal voices are established and acknowledged. Like characters in a Beckett play, 
chat participants learn to survive using radically impoverished discourse within a 
sensuously desolate landscape, and they sustain surprising forms of interaction for 
about an hour. 

8. Conclusion 

As we have seen in this paper, when students enter into one of our chats they enter 
into a complex social world. They typically quickly constitute a working group and 
begin to engage in activities that configure a group experience. This experience is 
conditioned by a social, cultural, technological and pedagogical environment that has 
been designed for them. Within this environment, they adopt, adapt and create 
methods of social practice for interacting together with the other students who they 
find in the chat environment. Over time, they explore their situation together, create 
shared meaning, decide what they will do and how they will behave, engage in some 
form of mathematical discourse, socialize, and eventually decide to end their session.  

Then our job as researchers begins: to analyze what has happened and how the 
software tools we are designing condition the collaborative experiences that groups 
construct and sustain. We face the same poverty of knowledge about our subjects that 
the participants themselves face about each other. But, here too, less can be more. 
This record is conducive to careful, detailed analysis, without the interpretive 
complexities of video recording and transcription. We can analyze what happens at 
the group unit of analysis, with the methods of interaction adopted by the 
participants, because everything that could have gone into the shared understanding 
of the participants is available in the persistent record of the chat room history.  

We can study this record at our leisure and make explicit the influences which 
the group experienced tacitly in the flow of its life. We can observe how several 
students constitute and sustain their group cognition in the math chat environment we 
are designing with them. 

We can identify successful and failed math proposals, questions, greetings and 
other low-level interactions. We can observe how groups construct, identify, make 
sense of and explore math objects. But we can also see how these elementary 
interactions build up longer sequences of group cognition (Stahl, 2006b), 
intersubjective meaning making (Suthers, 2006) and sustained collaborative group 
experiences. 
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